Recognizing Human Faces: Physical Modeling and Pattern Classification
نویسنده
چکیده
Title of dissertation: RECOGNIZING HUMAN FACES: PHYSICAL MODELING AND PATTERN CLASSIFICATION Gaurav Aggarwal, Doctor of Philosophy, 2008 Dissertation directed by: Professor Rama Chellappa Dept. of Electrical & Computer Engineering and Dept. of Computer Science Although significant work has been done in the field of face recognition, the performance of the state-of-the-art face recognition algorithms is not good enough to be effective in operational systems. Most algorithms work well for controlled images but are quite susceptible to changes in illumination, pose, etc. In this dissertation, we propose methods which address these issues, to recognize faces in more realistic scenarios. The developed approaches show the importance of physical modeling, contextual constraints and pattern classification for this task. For still image-based face recognition, we develop an algorithm to recognize faces illuminated by arbitrarily placed, multiple light sources, given just a single image. Though the problem is ill-posed in its generality, linear approximations to the subspace of Lambertian images in combination with rank constraints on unknown facial shape and albedo are used to make it tractable. In addition, we develop a purely geometric illumination-invariant matching algorithm that makes use of the bilateral symmetry of human faces. In particular, we prove that the set of images of bilaterally symmetric objects can be partitioned into equivalence classes such that it is always possible to distinguish between two objects belonging to different equivalence classes using just one image per object. For recognizing faces in videos, the challenge lies in suitable characterization of faces using the information available in the video. We propose a method that models a face as a linear dynamical system whose appearance changes with pose. Though the proposed method performs very well on the available datasets, it does not explicitly take the 3D structure or illumination conditions into account. To address these issues, we propose an algorithm to perform 3D facial pose tracking in videos. The approach combines the structural advantages of geometric modeling with the statistical advantages of a particle filter based inference to recover the 3D configuration of facial features in each frame of the video. The recovered 3D configuration parameters are further used to recognize faces in videos. From a pattern classification point of view, automatic face recognition presents a very unique challenge due to the presence of just one (or a few) sample(s) per identity. To address this, we develop a cohort-based framework that makes use of the large number of non-match samples present in the database to improve verification and identification performance. RECOGNIZING HUMAN FACES: PHYSICAL MODELING AND PATTERN CLASSIFICATION
منابع مشابه
Face Recognition by Cognitive Discriminant Features
Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملSubtle Facial Expression Recognition in Still Images and Videos
Many researchers in the engineering and computer science communities have been developing automatic ways for machines to recognize emotional expression, as a goal towards achieving human-machine intelligent interaction. Research on emotion classification utilizes pattern recognition approaches for recognizing emotions, using different modalities as inputs to the emotion recognition models. In t...
متن کاملWavelet-BasedMultiscale Adaptive LBP with Directional Statistical Features for Recognizing Artificial Faces
Recognizing avatar faces is a very important issue for the security of virtual worlds. In this paper, a novel face recognition technique based on the wavelet transform and the multiscale representation of the adaptive local binary pattern (ALBP) with directional statistical features is proposed to increase the accuracy rate of recognizing avatars in different virtual worlds. The proposed techni...
متن کاملInvariant Recognition Of Human Faces
Visual communication plays an important role in human communication and interaction. In order to interact socially, we must be able to process faces in a variety of ways. In this paper, an algorithm for invariant recognition of human faces based on LVQ neural network is presented. The proposed system is shown to exhibit robustness in achieving better classification results with both good genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008